
International Journal of Basic and Applied Biology 
p-ISSN: 2349-5820, e-ISSN: 2349-5839, Volume 6, Issue 2; April-June, 2019, pp. 92-98 
© Krishi Sanskriti Publications 
http://www.krishisanskriti.org/Publication.html 
 
 

In silico Study for Checking the Antifungal 
Properties of Nyctanthes arbor-tristis 

Charu Kalra, Shivangi Das, Rohan Kashyap and Reeta Kumari* 

Assistant Professor, Department of Botany, Deen Dayal Upadhayaya College, University of Delhi, Dwarka Sector-3 
B.Sc. (Hons) Botany, UG students, Deen Dayal Upadhayaya College, University of Delhi, Dwarka Sector-3, New Delhi 
B.Sc. (Hons) Botany, UG students, Deen Dayal Upadhayaya College, University of Delhi, Dwarka Sector-3, New Delhi 

Assistant Professor (Faculty), Department of Botany, Deen Dayal Upadhayaya College, University of Delhi, Dwarka Sector-3, New 
Delhi- 110078 

E-mail: gautam.rita@gmail.com 
 
 
Abstract—Nyctanthes arbor-tristis L., a large woody shrub admired for its fragrant white flowers is not only of great cultural importance but 
also finds immense use in indigenous medicine. Each and every part of the plant harbors a wide variety of active compounds and possesses 
antifungal, antibacterial, antiviral, laxative and diuretic properties amongst others. Leaf extracts of Nyctanthes were also found to be effective 
in inhibiting the radial growth of three fungal pathogens of rice viz. Pyricularia oryzae, Cochliobolus miyabeanus and Rhizotonia solani. The 
present in-silico study is an attempt to check the potential of antifungal activity of phytochemical constituents from Nyctanthes. 16 established 
phytoligands from seeds, leaves and flowers were docked against four enzymes involved in fungal  infection – two cellulases (β-glucosidase 
and endo-β-1,4-glucan cellobiohydrolase) and two hydrolases (endopolygalacturonase and rhamnogalacturonase). Enzyme ligand binding 
energy was computed using PyRx software (Version 0.8) and the interactions were visualized in PyMol (Version 2.3). The binding energy of 
phytocompounds against cellulases came out to be comparatively higher than the hydrolases and the active compounds Arbortristoside D (-
10.7 kcal/mol) and ursolic acid (-9.2 kcal/mol) showed greater affinities with them respectively. The result of this study highlights the potential 
of Nyctanthes arbor-tritis as an efficient deterrent for fungal growth and a preferable alternative for synthetic fungicide. Furthermore it 
suggests the need for wet lab research experiments to reaffirm these findings and to devise a method for the synthesis of selected active 
compounds at a commercial level.  

Introduction 

The Sanskrit phrase “Paarinaha Samudrath jaatho va parijatah” means ‘The Parijata tree emerged from the ocean after a 
profound search and is hence named so’ [1]. Nyctanthes arbor-tristis (Parijata tree) Linn. is one of the most useful traditional 
medicinal plants in India. It is distributed widely in sub-Himalayan regions and Southwards to Godavari. Each part of the plant 
has some medicinal value and is thus commercially exploitable. It is now considered as a valuable source of several unique 
products for the medicines against various diseases and also for the development of some industrial products.This sacred tree 
with grey bark and milk-white fragrant flowers possesses antifungal, antibacterial, antiviral, antimalarial, anticancer, laxative and 
diuretic properties amongst others [2, 3]. Also called the night jasmine, this tree blooms at night and showers its flowers at the 
break of dawn [4].  Following the pattern of its flowering, the local people of Tripura are also known to predict weather and plan 
their agro forestry activities accordingly [5]. 

Each and every part of the plant harbors a wide variety of active compounds and is of immense importance in pharmacology. 
Leaf, flower, fruit and seed extracts of the plant are also reported to work against Gram negative bacteria [3]. Specifically, leaf 
extracts of Nyctanthes were also found to be effective in inhibiting the radial growth of three fungal pathogens of rice viz. 
Pyricularia oryzae, Cochliobolus miyabeanus and Rhizotonia solani [3]. The present in silico study is aimed to check the 
potential of antifungal properties of phytochemical constituents from Nyctanthes arbor-tristis. The approach of this study is 
based on molecular docking to determine the interactions between the selected phytoligands and certain fungal enzymes- two 
cellulases and two hydrolases. Molecular docking softwares utilize various algorithms for predicting all the possible interactions 
between ligands and the macromolecule and also estimate their binding energy [6, 7]. The fungal enzymes considered as target 
proteins in the study are, endopolygalacturonase and rhamnogalacturonase (hydrolases) which are involved in initial stages of 
cell wall degradation and β-glucosidase and endo-β-1,4-glucan cellobiohydrolase (cellulases) which come into function after 
appressorium formation [8]. The fungal enzymes were also docked against their respective inhibitors as a reference point for 
evaluating and comparing the strength of binding energy of all the phytoligands with them. Endo-β-1,4-glucan cellobiohydrolase 
shows product inhibition and thus was docked against cellobiose [9], β-glucosidase with gluconolactone [10] and 
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Table 2: Selected phytoligands from Nyctanthes arbor-tristis m Nyctanthes arbor-tristis. 

 
Source 

 
Ligands 

 
Canonical SMILES 

 
 
 

Seeds 

 
1. Arbortristoside A 

 
CC1C2C(C(C1O)OC(=O)C=CC3=CC=C(C=C3)OC)C(=COC2OC4C(C(C(C(O
4)CO)O)O)O)C(=O)OC 

 
2. Arbortristoside B 

 
COC(=O)C1=COC(C2C1C(C(C2CO)O)OC(=O)C=CC3=CC(=C(C=C3)O)O)O
C4C(C(C(C(O4)CO)O)O)O 

 
3. Arbortristoside C 

 
CC1C2C(C(C1OC(=O)C=CC3=CC=C(C=C3)O)O)C(=COC2OC4C(C(C(C(O4)
CO)O)O)O)C(=O)OC 

 
4. Arbortristoside D 

 
COC(=O)C1=COC(C2C1C(C(C2COC(=O)C=CC3=CC(=C(C=C3)O)O)O)O)O
C4C(C(C(C(O4)CO)O)O)O 

 
5. Arbortristoside E 

 

 
CC1C2C(C(C1O)O)C(=COC2OC3C(C(C(C(O3)COC(=O)C=CC4=CC=C(C=C
4)OC)O)O)O)C(=O)OC 

 
6. 6-β-hydroxyloganin 

 

 
CC1C2C(C(C1O)O)C(=COC2OC3C(C(C(C(O3)CO)O)O)O)C(=O)OC 

 
 
 

Leaves 

 
7. Arborside A 

 
CC1C2C(C(C1OC(=O)C3=CC=CC=C3)OC(=O)C4=CC=CC=C4)C(=COC2OC
5C(C(C(C(O5)CO)O)O)O)C(=O)OC 

 
8. Arborside B 

 
CC1C(CC2C1C(OC=C2C(=O)OC)OC3C(C(C(C(O3)CO)O)O)O)OC(=O)C4=C
C=CC=C4 

 
9. Arborside C 

 
CC1C2C(C(C1OC(=O)C3=CC=CC=C3)O)C(=COC2OC4C(C(C(C(O4)CO)O)
O)O)C(=O)OC 

 
10. Arborside D 

 
COC(=O)C1=COC(C2C1C(C(C2COC(=O)C3=CC=CC=C3)O)O)OC4C(C(C(C
(O4)CO)O)O)O 

 
11. β-sitosterol 

 
CCC(CCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C)C(C)C 

 
12. Calceolarioside A 

 
C1=CC(=C(C=C1CCOC2C(C(C(C(O2)CO)OC(=O)C=CC3=CC(=C(C=C3)O)
O)O)O)O)O 

 
13. Ursolic Acid 

 

 
CC1CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C)O)C)C)C2C1C)C)C(=
O)O 

 
 

Flowers 

 
14. Nyctanthoside 

 
COC(=O)C1=COC(C2C1C(C(C2CO)O)O)OC3C(C(C(C(O3)CO)O)O)O 

 
15. Rengyolone 

 
C1COC2C1(C=CC(=O)C2)O 

 
16. Astragalin 

 

 
C1=CC(=CC=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)OC4C(C(C(C(O4)CO
)O)O)O)O 

 

Results and Discussion 

Results of this study showed favorable binding energy for all the phytoligands with the target proteins except the binding energy 
of Arbortristoside B with rhamnogalacturonase enzyme which turned out to be + 5.8 kcal/mol.  The docking of Arbortristoside D 
with endo-β-1,4-glucan cellobiohydrolase yielded the highest binding energy with a value of  -10.7 kcal/mol followed by 
Arbortristoside E and Calceolarioside A with a binding energy of -10.4 kcal/mol. While studying (Table 3) the binding energy of 
all the phytoligands with the selected four fungal enzymes it was observed that the ligands showed higher binding energy 
(average) with cellulases (-8.631±1.23 kcal/mol) than hydrolases (-6.123±2.53 kcal/mol) . 
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This study clearly reflects the ability of Nyctanthes as an alternative to synthetic fungicides, which are susceptible to resistance 
development by fungal pathogens. These results can further be investigated by in vivo experiments. In future a commercially 
viable method to synthesize these active compounds could be developed. 
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